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Abstract

Robotic systems have traditionally been controlled by handheld interfaces such as game
controllers, joysticks, mice, and keyboards. While these interfaces are highly effective, there are
situations where an operator may be unable to use their hands. The proposed method explores the
use of an Intel RealSense depth sensing camera as a robotic teleoperation input method by
tracking the operator’s eye-gaze to the computer screen. It utilizes the eye-gaze vector and body
position to determine operator intent and provide input to a robotic control system.
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Executive Summary

Throughout the many fields which make use of robotic technologies to control manufacturing,
medical, or other processes, there are times where manual human control is favored over
automation and autonomous robotic control. In these situations, the operator of the robot typically
utilizes a keyboard and mouse, joystick, or game controller to provide input to the robot.
Unfortunately, these methods have a limited number of real-time inputs, forcing operators to
switch tasks in order to adjust cameras, switch manipulators, or perform other high-level tasks. In
order to facilitate effective operation of a robotic system, the cognitive, physical, and temporal
workload on the operator must be minimized. The use of head position and eye-gaze vector
tracking allows for an intuitive secondary control input stream to be provided to applications,
minimizing cognitive overhead caused by task switching for high level control operations.

Outside of industrial robotic control, there are other situations where the use of visual tracking
for head and eye-gaze vectors can be extremely useful. Many people suffer from disabilities
which limit or completely remove their ability to operate a controller with their hands. Under
such circumstances, the only methods of robotic control are those based on body and eye position
interpretations.

There are commercial systems available today, such as the Tobii Pro line of eye tracking
devices[1], which are research-enabled versions of their consumer grade Tobii line of eye tracking
products[2]. While these devices are extremely capable, they require expensive specialized
hardware, and the consumer version is restricted for use in non-research applications. At this
time, there are very few other commercial eye tracking solutions available on the market.

The goal of this project is to tackle the lack of low-cost and versatile eye tracking systems
by implementing a high-fidelity body and eye-gaze tracking system utilizing the low-cost Intel
RealSense family of RGB+D cameras. These cameras provide a high resolution video stream with
an associated depth stream. The project aims to digest the RGB+D data into streams of data which
can be easily implemented into other projects via ROS or by importing a Python library.
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1 Introduction

1.1 Motivation

Most human-operated robotic systems are controlled using handheld interfaces such as a
keyboard and mouse, joystick, or game controller. These forms of input are time tested and
highly reliable, but there are many situations where such a control system may be less
appropriate, or altogether impossible to use. This project aims to develop a form of control input
based on an operator’s head position and eye-gaze vector.

1.1.1 As an Additional Input

While preoccupied by certain tasks such as performing surgery, driving a car, or controlling a
robot with a game controller, an operator may be unable to dedicate their hands to an additional
task. In these circumstances it may be possible for the operator to digitally or physically switch
the input to control another task. However the need to switch inputs in this manner increases the
cognitive workload on the operator, resulting in a corresponding increase in the likelihood of
making an error.

Utilizing the head and eye position to provide an additional source of inputs allows the operator
to control other aspects of the system without compromising their original control, and without
dramatically increasing the cognitive workload. This additional control channel can be assigned
to camera control tasks, or to direct high level activities for the robot, such as visually selecting a
target.

1.1.2 Disability Service

A number of medical conditions may result in an operator losing the ability to use their hands.
With most modern robotic control systems built around the user’s hands to control the primary
inputs, this can result in significant barriers for the physically disabled. A variety of medical
assistance telenursing robots are currently being developed in academic and research spaces.
However, much of this research is directed at developing assistive robots for However, many of
these robots require an able-bodied operator to provide inputs. An effective head and eye-gaze
tracking system could enable a disabled operator to direct a robot through visual queues.

8



Recent research in the subject of disability service robotics can generally be broken down into
two major categories. The first category is nursing staff assistance systems. These are systems
such as the Tele-Robotic Intelligent Nursing Assistant (TRINA)[3] which expand the physical
capabilities of nurses, doctors, physicians assistants, and other medical professionals to
effectively care for patients without being physically present. With few exceptions, these robots
require the robot operator to control the robot via the aforementioned physical contact interfaces.
The second category is patient assistance systems. These systems are designed to interact with
and operate under the direct command of a physically or mentally incapacitated patient. These
systems are not as sophisticated as existing telenursing platforms, although promising research is
being done with patient-friendly interface methods, with speech-to-text[4] receiving the lions
share of development.

1.2 Current Technology

While head and eye-gaze tracking technology does not currently enjoy widespread adoption in
the field of robotics, there has been a significant amount of research performed on this topic and
related subject areas. There are a variety of eye-gaze tracking systems available today that cover a
wide range of applications and deploy a number of different technologies[5]. Since 2010, with the
introduction of the Microsoft Kinect as an inexpensive research tool, there has been widespread
availability of 3D body tracking systems, which also provide a potential high-fidelity alternative
input channel for robotic systems.

1.2.1 Gaze-to-Screen Tracking

Some of the earliest digital eye tracking systems relied on corneal reflections from infrared
light sources shined into the eyes of the operator[6]. This technique, also known as Purkinje
imaging, calculates the relative angle of the eye by measuring the angle between the center of the
eye and the reflected dot[7].

Later systems made use of increased RGB camera quality, and/or configurations utilizing
multiple cameras to capture data with increased quality. A large number of models have been
proposed that make use of both single and multi-camera setups[8].

In addition to the Purkinje system for tracking eyes, a number of other methods have been
developed utilizing different forms of tracking technology. The most common view-gaze detection
approaches, hardware requirements, and processing methods are summarized in Table 1.1.
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Gaze Detection Hardware Analysis Method
Pupil Tracking RGB, Near IR Analysis of image contrast

Corneal Reflection
RGB with LEDs
on 4 corners of
computer screen

Analysis of position of
LED reflections

Multi-Camera
Shape Matching

Stereo camera
(RGB/Near IR)

Analysis of eye and pupil
relative to 3D template to
establish gaze vector

Table 1.1: Primary Methods for Gaze Tracking from Kar et al

Pupil-Tracking cameras represent the most common and basic systems currently available for
gaze detection. They require little to no specialized hardware, and can be easily developed using
low-cost consumer and professional grade imaging devices. These systems use computer vision
to locate the the operators pupil, and derive gaze-vector information based on its relative position
to other eye and facial features. Corneal Reflection systems, also known as Purkinje imaging,
takes advantage of the reflectivity of the various layers of the optical structures within the eye. In
order for this system to work, high quality and high sensitivity cameras must be used, as the
reflected light patterns are difficult to capture without the use of specialized hardware. The final
approach is multi-camera shape matching. This approach captures multiple images of the eyeball
from a variety of vantage points, and utilizes feature matching to determine the position and
rotation of the eye in 3D space. This approach makes use of the technology used in the other two
detection methods, and produces extremely high quality data. Like Purkinje imaging, this
approach requires relatively expensive and high-quality image sensors. [7][8]

With the widespread availability of consumer grade RGB+D depth sensing cameras starting in
late 2010 with the introduction of the Microsoft Kinect for the Xbox 360, various algorithms and
approaches were developed to take advantage of the new dimension of data
available[9][10][11][12][13]. The approaches and methods introduced by these research papers
provided a large portion of the foundational knowledge from which this project was constructed.

1.2.2 Body Motion Tracking

The introduction of affordable depth tracking cameras also allowed for a significant amount
of development and research to take place in body tracking systems. Previous systems had either
severely limited accuracy (2D tracking), or cost thousands of dollars (Vicon 3D system). Later
developments in Inertial Measurement based tracking systems allowed for a person to be located
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in 3D space by deriving component translations from the acceleration, rotation, and gyroscopic
transformations. The most common body tracking methods are described in Table 1.2[14].

Capture Type Hardware Method

Optical (3D)
Single Camera RGB
Multi Camera RGB
Single Camera RGB+D

Markerless or Passive
(Retroreflective) Markers

Optical (2D) Single Camera RGB Markerless

Inertial
Accelerometer,
Gyroscope, and/or
Magnetometer

Mathematical Position
Derivation

Table 1.2: Methods for Motion Tracking from Yayha et al

Like the aforementioned gaze tracking systems, position tracking systems can generally be
broken down into three categories. The first category is 3D optical tracking systems, which utilize
one or more optical cameras to determine the position of a body in 3D space. Newer tracking
setups may also make use of depth-sensing cameras to provide an additional data channel. These
systems rely on computer vision processing of the RGB and/or depth streams or retro-reflective
dots (As see in in the VICON) system to locate the body. The second category is 2D optical
systems. These systems typically rely on a single RGB camera and computer vision feature
matching algorithms to determine the screen space location of a target, or the relative angular
position. Because of their limited vantage point, these systems generally do not have 3D location
capabilities. The final common capture system is inertial, which relies on an accelerometer,
gyroscope, and/or magnetometer placed at each joint on the body. By combining the derivation of
these sensor readings, the accelerative and rotational components of an operators movements can
be translated with a great degree of accuracy into absolute positional information. This system has
several advantages over optical ones, since it does not require any external sensing equipment,
and can not be occluded by passing objects or the body of the operator. [9][10][11][12][13][14].

1.3 System Design Overview

In order to facilitate the effective design of an eye-gaze and head tracking system, the
application needs to be broken down into a collection of semi-autonomous components. The
major components of the system are outlined in Figure 1.1.
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Figure 1.1: System Overview

1.3.1 Operations UI

The operations UI is a high level interface designed to provide easy access to the Testing and
Debugging Module, the Model Trainer Module, and the ROS Test Module. This is a basic module
which allows a user to interact with these three important debugging and development tools without
direct interaction with the command line, which was a specified requirement for this project.

1.3.2 ROS Test Module

The ROS Test Module, along with the ROS Interface module, make up the bulk of the provided
ROS code. When started, it will connect to the ROS interface and display the raw values captured
by the tracking system.

1.3.3 Testing and Debugging Module

The Testing and Debugging module is primarily used during the development process for the
Tracker Core module. This module does not have any specifically defined functionality, although
it does interact with all of the exposed interfaces for the Tracker Core module. Development of the
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eye-gaze and head position tracking system is generally performed between this module and the
Tracker Core module before additional features are implemented in the other system modules.

1.3.4 Model Trainer

In order to provide enhanced accuracy for the tracking system, aNeural Network is used to relate
extracted face and head position data and screen view coordinates. The Model Trainer application
allows for model training data to be collected, and a Neural Network model to be trained. Each
generated model is reliant on the size of the screen used, and the position of the RealSense camera
relative to that screen, so each unique setup will require a differently trained network.

1.3.5 ROS Interface

The ROS Interface module is a sample implementation of the Tracker Core Python Library. It
is a very lightweight module, mainly designed to provide a direct interface between the endpoints
exposed from the Tracker Core module and other nodes which exist in a ROS cluster. If you are
looking for an example on how to implement the Tracker Core Python Library in another
application, such as embedding it directly into another ROS node or non-ROS program, this is a
good Place to start.

1.3.6 Tracker Core

The Tracker Core is the meat and potatoes of the eye-gaze and head position tracking project.
Internally, it contains several layers of logic which are responsible for retrieving the raw streams of
data from the RealSense RGB+D camera, transforming the imaging data into a usable format, and
then passing it through a stack of algorithms which convert the images into positioning information.
The stack relies heavily on the OpenCV computer vision library, the TensorFlow machine learning
library, and the advanced data manipulation features provided by Python.
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2 Technology

The core module described in the Introduction of this document represents the application
component responsible for performing the bulk of technical operations required to extract relevant
derived positional information from a system operator. The core is implemented as a Python
module which performs a series of sequential operations in a continuous loop. An implementing
application only needs to call init() to configure the library, and then loop_once() for each
frame to be processed. The logical flow of the application is illustrated in Figure 2.1.

Figure 2.1: TrackerCore application overview
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2.1 Logical Structure

2.1.1 Initialization

Found at trackercore.py:init()
The first step in the core processing flow is the initialization of the tracking systems dependent

components, seen in Figure 2.2. When the implementing program calls init(), the core begins
the configuration and subinitialization processes for the dependent libraries, as specified in the
application configuration. This method is only called one time when the system is launched.

Figure 2.2: TrackerCore init() flow

2.1.2 Loop Controller

Found at trackercore.py:loop_once()
The loop controller is the second exposed method for implementing applications. When

called, it will attempt to perform a single iteration of the acquisition, processing, and reporting
flow. Assuming this process is successful, the desired data will be returned. If any step of the
process fails or is unable to continue, the loop will be broken and no data is returned. This action
begins by resetting variables and data structures in preparation for the next run. It then iteratively
calls each of the sub-actions, until either the last one completes, or the process is aborted by one
of the sub-actions raising an exception.

Figure 2.3: Trackercore loop_once() flow
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2.1.3 Image acquisition

Found at trackercore.py:acquire_image().
The image acquisition step is the first sub action called by loop_once(). When invoked, the

acquisition pipeline attempts to get a color (RGB) frame, and a depth frame from the RealSense
camera. Due to the internal logic used in the RealSense support library, it is possible that the
depth frame may not be present, especially when the camera is first initialized. Assuming the data
is present, the frames are saved to internal memory, and the process continues.

In the default configuration, the color frames are read at a resolution of 1920x1080, and the
depth frames are read at a resolution of 1280x720, the maximum resolutions supported by this
model of RealSense camera. If the tracker needs to be run on a lower-power platform, it may be
possible to decrease these resolutions at the cost of tracking accuracy.

Figure 2.4: TrackerCore acquire_image() flow

2.1.4 Image Preprocessing

Found at trackercore.py:proprocess_images().
Images returned from the camera are not in an immediately usable form. The separate RGB

and depth sensing modules in the camera do not have the same alignment, and must be adjusted
and converted into OpenCV compatible formats before they can be processed by the processing,
extraction, and estimation algorithms. A colorized depth frame is also generated to assist in
visualization and debugging purposes. The alignment and cropping process utilizes percentage
based cropping parameters, which allows the function to operate regardless of the configured
resolution from the image acquisition action.
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Figure 2.5: TrackerCore preprocess_images() flow

2.1.5 Facial Processing

Found at trackercore.py:process_face().
Facial Processing is the first major step in the processing pipeline. Applying the facial detection

algorithm to a Full HD (1920x1080) frame requires an excessive amount of computing power, even
on a relatively powerful machine. In order to reduce this load, the input image is downscaled during
the grayscale conversion phase. A downscale of 50% results in a 300% increase in performance,
without any noticeable decrease in the face tracking accuracy. This implementation makes use
of dlib’s built in face detection algorithm and provided 68 point facial feature detection model,
demonstrated in Figure 2.7, which provide a generally acceptable degree of accuracy, although
these algorithms are comparatively sensitive to ambient lighting conditions, and have been known
to suffer from accuracy issues on people with dark skin.

Figure 2.6: TrackerCore process_face() flow
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Figure 2.7: 68 Point facial feature detection applied over colorized depth frame

Feature Interpolation

While the 68 point facial tracking model does provide a great degree of accuracy, it is missing
several points which are critical to effectively tracking the operator’s head. The additional points
as shown in Figure 2.8 and include one point at the glabella1, one point on each cheekbone, and a
point on the chin. The feature interpolation algorithm flow is outlined in Figure 2.9.

Figure 2.8: Enhanced feature tracking overlay with 4 derived points

1The glabella is the point on the face which lies on the forehead at the center of the brow.
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Figure 2.9: Facial point interpolation derive_avg() flow

2.1.6 Eye Extraction

Found at trackercore.py:extract_eyes().
Once the operator’s face has been located and features have been extracted, the eye extraction

algorithm is run to determine the relative pupil locations. The extraction process outlined in Figure
2.10 is applied two times, one for each eye.

Figure 2.10: TrackerCore extract_eyes() flow

Extraction

The RGB eye extraction phase is carried out in two phases. In the first phase, the bounds
of the eye are calculated using the normalized coordinates generated by process_face(), and
those coordinates are clamped to 0..1 in order to eliminate processing exceptions if the operator
approaches the edge of the camera’s view-frame. Once the bounds of the eye have been calculated,
that subsection of the image is extracted. In the second phase, the 6 points thatmake up the boundary
of the eye need to be transformed from the original image’s coordinate space to the normalized
coordinate space of the cropped eye image.

Eye Angle Calculation

After the points have been transformed, the corner points of the eye are used to calculate the
eyes angle. This important piece of information allows the estimation phase of the algorithm to
compensate for rotation of the operator’s head.
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Pupil Location

The final phase of the facial feature tracking workflow is the pupil estimation stage. This stage
took the most time to perfect during the development of this project, eating up nearly 4 entire
months of time, during which numerous solutions were attempted with limited to no success. A
variety of convolutional classifiers were utilized in an attempt to automatically locate the pupils,
and while the background research on the subject was extremely promising, limited knowledge in
the field prevented these approaches from being successfully implemented. The approach utilized
in this paper is a basic positional calculator which demonstrates sufficiently accurate tracking when
used on low resolution data sets, such as those generated by the RealSense camera’s color sensor.
This process is outlined in Figure 2.11

Figure 2.11: Pupil Extraction Algorithm

2.1.7 Screen Location Estimation

Found at trackercore.py:estimate_screen_pos().
The final stage in this gaze-vector tracking saga is the screen location estimation system. This

component aggregates a collection of essential variables from the previous stages of the loop, and
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passes them through a basic neural network implemented with TensorFlow. This is the most basic
step of the process, requiring a single call to model.predict() in order to predict the next set of
values. When tested in semi-ideal conditions, with a single operator, the system had an average
error factor of 10% to 20%, with significant accuracy variations depending on the location the user
was looking at. Figure 2.12 shows how the model was far more accurate when predicting operator
gaze at locations towards the center of the display (indicated in blue), while locations at the edges
produced unusably inaccurate data (indicated in yellow and red).

Figure 2.12: Model estimation accuracy by distance from actual position

2.2 Model Training

Because the tracker relies on a machine learning model, its effectiveness is highly dependent
on variables such as the position and angle of the RealSense camera module, the size of the
computer monitor used, and the quality and diversity of training data it is given. The data
collection and model generation code is broken into two application components, with the data
collector found in trainer/collector.py and the model training and generation code found in
trainer/train2.py. These two modules an be accessed and controlled from the operations UI,
however in order to achieve best performance, some tweaking may need to be made directly to
these files.
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2.2.1 Collecting Data

Collecting data is performed by launching the collector program, either from the terminal by
executing trainer/collector.py or by selecting the ”Data Collector” option from the
Operations UI. The data collector will launch fullscreen in a paused state as shown in Figure 2.13,
and display the current readings it is getting from the Tracker Core. Pressing space will unpause
the program, and begin recording training values. To ensure the highest possible accuracy, make
sure that the test subject is staring directly at the mouse pointer for the entire duration of the test.
If the user loses focus on the pointer, they can interrupt the process and delete the last few
samples to prevent corruption of the data. It is recommended that between 20k and 40k samples
be collected for each participant.

Figure 2.13: View of the training data collector when paused

2.2.2 Training the Model

Once a sufficient amount of data has been collected, the automated training process can be
invoked either by executing trainer/train2.py or by selecting the ”Model Trainer” option from
the Operations UI. This process can take anywhere from one to 48 hours depending on the computer
being used, and the training parameters.
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2.3 ROS

In order to facilitate the integration with existing robotic systems, an implementation of the
tracker core as a ROS node was created. This node implements the basic functionality of the
tracker core, and exposes it through several ROS topics and basic messages. A table outlining
these messages is outlined in A.

2.3.1 Test Node

Found at ros/src/eye_head_tracker/src/test_node2.py.
This ROS node provides a real-time readout and overview of the tracker values, as well as an

interface for adjusting configuration values. This node subscribes to all of the topics published by
the interface node, and publishes to the command channel for sending configuration update
messages. The test node also provides a readout of informational messages generated by the
TrackerCore, which can assist in debugging.

Figure 2.14: View of the ROS Test Interface
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2.3.2 Interface

Found at ros/src/eye_head_tracker/src/tracker.py.
This ROS node provides a minimumworking implementation of the tracker node over the ROS

network. It subscribes and/or publishes to all of the nodes listed in Appendix A, as showin Figure
2.15.

Figure 2.15: ROS Interface Diagram

2.4 Operations UI

Found at userinterface.py.
This module provides a user-friendly interface to assist in launching different components of the

gaze tracking system. It contains a set of buttons, each ofwhichwill directly launch a subcomponent
of the tracker system. For convenience and debugging purposes, stdout and stderr from each
of these processes will be written to a terminal viewer. The interface has the ability to launch five
sub-tasks, outlined below.
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Figure 2.16: View of the Operations UI

2.4.1 Demo

Launched with ./trainer/demo.py.
This button launches the demonstration interface. In order for this to work, you must already

have a trained model in your workspace. The demonstration opens a full-screen window, and draws
a series of points representing the last ten readings and their average, as shown in Figure 2.17. The
black border on the image was added in post for clarity.

25



Figure 2.17: Demonstration UI

2.4.2 Data Collector

Launched with ./trainer/collector.py.
This button launches the data collection module. The results of this module are written to

data.csv for use by the Training Module. More information about this module is available in
Section 2.2.1.

2.4.3 Trainer

Launched with ./trainer/train2.py.
This button launches the Model Trainer using default settings. The model will be trained from

the data written to data.csv. When debugging or fine-tuning the model, it is recommended that
the training script be invoked directly from the command line. More information about this module
is available in Section 2.2.2.

2.4.4 Model Tester

Launched with ./trainer/test.py.
The model tester re-runs the training data through the model to determine how suitable the

model is for eye tracking operations. The program will generate an average error factor reading, as
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well as a graphic heat-map similar to the one in Figure 2.12.

2.4.5 ROS

Launched with roslaunch ./ros/src/eye_head_tracker/demo.launch.
Invokes the ROS launch file to start a ROS master, the interface node, and the test node. This

spawns the interface seen in Figure 2.15. In order to use this button, your environment must be
pre-configured with the ROS sources, which can be done by adding them to your .bashrc file.
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3 Conclusion and Recommendations

3.1 Summary

This project explored the use of an Intel RealSense Depth Camera 435 as a low-cost
replacement for more expensive eye tracking systems such as those manufactured by Tobii Pro
and other research equipment manufacturers. Ultimately this project was not successful this year
in producing a drop-in replacement system, however hope is not lost. There is a lot of room for
improvement which can bring this system closer in line with the features and capabilities of these
more expensive devices.

This section of the paper will go over the various areas of general concern in this project, and
offer a number of potential remedies that can be implemented by future student groups who accept
the challenge of pursuing this task.

3.2 Conclusions

3.2.1 Performance

In order to facilitate development and elimination of bottlenecks in the processing pipeline, a
timing and debugging module was integrated into the core that allows for detailed post-run
analysis fo the applications timing characteristics. These reports are written out to the console
upon program termination, as well as to a file located at /tmp/funcperf.csv. A sample report
can be found in Appendix B. This report will have more or less lines depending on what program
was run, and what other functions were linked to the performance monitoring module.

Any function that relies on the core can take advantage of this performance monitoring by
including debug and then placing the @debug.funcperf above the function.

The TrackerCore and associated programs were written in Python, which is a language known
more for its ease of use and broad functionality than its speed. In the case of this application, that
results in execution speeds of 20FPS, with the majority of time being split between
core.trackercore.extract_eyes and core.trackercore.estimate_screen_pos, as seen
in Figure 3.1. The eye extraction function relies on a nested looping analysis function, which
incurs a severe performance penalty under python, and is responsible for the majority of the
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26ms that is spent in that function. The other major time sink is the gaze estimation function,
which involves invoking a TensorFlow model, which is an unsurprisingly slow operation. Both of
these functions could likely have their performance improved through the use of clever
mathematical tricks or re-implementation in a different language.

Figure 3.1: Function Runtime Performance Analysis

3.2.2 Accuracy

Accuracy is one of the most important goals of this project, and yet it is unfortunately one of
the most lacking. The application produces various streams of data, of varying quality levels. The
head depth and position readings are accurate to within 1-3cm, depending on conditions. As
shown previously in Figure 2.12, the screen space estimation algorithm and model struggle to
accurately predict the target of the operators gaze when aimed outside of a select region in the
middle of the screen. While this region of the screen (Indicated in dark blue) has an error of as
little as 5%, when aimed towards the edges of the monitor, the gaze tracking can be off by as
much as 100%.

The measurement accuracy issues come from three primary locations within the data flow. The
first is the resolution of the extracted eye images. Although a 1080p frame has over two million
pixels, the region which the operators eye occupies can be contain fewer than ten thousand. Under
typical conditions, the resolution of the eye window is approximately 175x75 pixels, with the center
of the pupil moving only a few pixels up and down as the eye looks from the top to the bottom of
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the screen. This highlights the second issue, which is the accuracy of the pupil location algorithm.
Although this algorithm is fairly accurate, it has an error of plus or minus two to three pixels
as lighting conditions change, making its error nearly as much as the entire vertical data range.
This unfortunately poor signal to noise ratio compounds into the third section of the processing
algorithm, the trained recognition model. With so much noise in both the training and testing data,
this results in very poor vertical tracking accuracy, and moderately accurate horizontal tracking
accuracy.

3.2.3 Portability

The current implementation of the TrackerCore was only tested in an Ubuntu 20.04 x86_64
Desktop Linux Environment with an Intel RealSense Depth Camera 435. Due to the limited amount
of resources available through the duration of this project, the code was not tested on other operating
systems or platforms, such as a tablet computer or Raspberry Pi. It was also not tested with other
depth sensing cameras. It is not known at this time what impact this limitation had on Performance
and Accuracy.

3.2.4 Racial Bias in AI and Computer Vision

Systems that rely on Artificial Intelligence and/or Computer Vision for processing images of
human faces are inherently predisposed to suffer from issues relating to the race or ethnic
background of their subjects. Even facial recognition systems used by large companies who make
test proctoring systems have a tendency to severely under-perform when used with persons of
minority origin [15]. Unfortunately due to COVID-19, the models and algorithms used by this
paper could not be tested on a diverse group of subjects, and will need to be adjusted and
retrained on a larger dataset.

3.3 Future Work

In order to bring this system up to the quality, accuracy, and ease of use standards that would
allow it to function as a drop-in replacement for most commercial tracking systems, there is work
that needs to be done. This section of the paper contains an overview of that work, and provides
starting points to launch from.

Copies of all code used in this project can be found on GitHub at
https://github.com/rgbd-motion-gaze-tracking/FINAL. A copy of repository as it existed at the
time of submission is available from the WPI library along with copies of this document.
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3.3.1 Performance

Implementing the performance monitoring system allows for much greater visibility into the
various limitations of the system. As can be seen in Figure ??, the two slowest functions are
core.trackercore.extract_eyes and core.trackercore.estimate_screen_pos. The
eye extraction function is slow because of its reliance on nested loops, structures which Python is
notoriously slow at executing. It may be possible to rewrite this section of the application using a
higher performance library, or by implementing a python extension module in C or C++. The
second major source of latency is the cost of executing an iteration against the TensorFlow model.
This is a more difficult area to assess potential solutions for, due to my limited knowledge of
tensorflow and other neural network libraries. Using a CUDA enabled GPU or re-implementing
the model using a different correlation framework may speed this up significantly.

3.3.2 Accuracy

The concerns about accuracy discussed above primarily stem from problems with camera
resolution and model accuracy, neither of which can be directly addressed without replacing
potentially significant components of the application. It may be worthwhile looking into other
cameras in the realsense family, or other scientific grade imaging devices which might be able to
capture higher resolution images of the eyes. It may also be possible to implement a more
accurate pupil tracking algorithm. Be warned that the current pupil tracking algorithm was the
result of months of trial and error with more sophisticated and accurate approaches such as
Seonwook Park’s ELG[16] and DPG[17] algorithms, of which we were unable to implement
either. If you are able to get these systems working, that would dramatically increase the accuracy
of this system.

3.3.3 Portability

Although the current system was only tested on Ubuntu 20.04 x86_64, it may be desirable to
run this system on older/newer versions of Ubuntu, other distros, or other architectures such as a
Raspberry Pi (ARM). During this project, there were issues with the binary component of Intel’s
pyrealsense library. With Ubuntu 16.04 LTS now in end-of-life status, Ubuntu 18.04 remains the
only other supported LTS branch. Assuming software compatibility, porting this system to another
computer should not be a monumental task, although there may be limitations with file paths that
need to be addressed.
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3.3.4 Racial Bias in AI and Computer Vision

It is an uncomfortable but undeniable fact that computer vision does not treat all operators
equally. Due to the COVID-19 lockdown, this system could not be tested on a diverse group of
people, so its effectiveness on operators with different skin tones, facial structures, eye color, etc.
is unknown at this time. If permissible by the school, it may be valuable to conduct a user study
testing the limitations of this system on a range of ethnic backgrounds to determine the extent of
the issues.
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Appendix A: ROS Topics Overview

In order to facilitate the integration with existing robotic systems, an implementation of the
tracker core as a ROS node was created. This node implements the basic functionality of the
tracker core, and exposes it through several ROS topics and basic messages. The below table
provides a comprehensive overview of the topics and messages currently implemented.

Topic Name Fields Description

/tracker_eyes

/EyePoint left
float32 angle
float32 x
float32 y

/EyePoint right
float32 angle
float32 x
float32 y

Provides raw pupil and eye orientation readings
for both of the operator’s eyes. This information
is primarily useful for debugging, or potentially
passing the gaze information from a lower
powered operator terminal to a system running
a larger gaze tracking model, potentially a
dedicated machine learning server.

/tracker_face

float32 face_depth
float32 face_x
float32 face_y
float32 face_angle
float32 depth_diff

Provides raw face readings. The face depth is
the number of millimeters away from the
RealSense the operator is located. Diff reports
the depth difference between the cheeks.

/tracker_gaze
float32 x
float32 y

Estimated gaze target on screen, if this value is
enabled in the TrackerCore configuration.

/tracker_cmd
string command
string value

Change a TrackerCore configuration value. See
the Control Commands section of trackercore.py
and the command message subscriber in
tracker.py for more information on valid
commands.

/tracker_log string message

Provides message output from the TrackerCore module.
This message is primarily intended for debugging and
demonstration purposes. Messages will contain ANSI
format codes, which must be stripped or interpreted.
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Appendix B: Example Performance Report

Below is an example report that was generated by running the demo.py application. Every
called function which possessed the @debug.funcperf decorator is listed in the table below,
along with the total time spent inside that function, the number of times that function was called,
and the average execution time.

Performance Report:
|Function | Tot. Exec| Calls| Avg. Exec|
|----------------------------------------|----------|----------|----------|
|core.trackercore.init | 1.92 s | 1| 1.92 s |
|core.trackercore.loop_once | 13.23 s | 213| 62.14 ms|
|core.trackercore.extract_eyes | 5.11 s | 213| 24.00 ms|
|core.trackercore.estimate_screen_pos | 4.97 s | 213| 23.34 ms|
|core.util.log | 89.87 ms| 6| 14.98 ms|
|core.trackercore.geteye | 5.11 s | 426| 12.00 ms|
|core.trackercore.process_face | 2.46 s | 213| 11.55 ms|
|core.trackercore.preprocess_images | 620.43 ms| 214| 2.90 ms|
|core.trackercore.acquire_image | 68.60 ms| 214| 320.55 us|
|core.util.scale | 49.22 ms| 213| 231.06 us|
|core.util.draw_poly | 14.67 ms| 426| 34.44 us|
|core.util.draw_line | 3.07 ms| 426| 7.20 us|
|core.util.crop | 4.95 ms| 854| 5.79 us|
|core.trackercore.debug_draw_features | 511.41 us| 213| 2.40 us|
|core.util.sample | 21.76 ms| 15762| 1.38 us|
|----------------------------------------|----------|----------|----------|
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